Almost continuity of the Cesàro-Vietoris function
نویسندگان
چکیده
منابع مشابه
Automatic continuity of almost multiplicative maps between Frechet algebras
For Fr$acute{mathbf{text{e}}}$chet algebras $(A, (p_n))$ and $(B, (q_n))$, a linear map $T:Arightarrow B$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(Tab - Ta Tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{N}$, $a, b in A$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$...
متن کاملAlmost Periodicity, Equi-continuity and Total Boundedness
Let X be a uniform space; that is to say, let X be a space provided with a system of indexed neighborhoods Ua(x) (x(EX, a=index), subject to the conditions (A. Weil) : (1) If xÇzX and if a is an index, then xÇzUa(x)\ (2) If a and /? are indices, then there exists an index y such that xÇzX implies U7(x)ÇZUa(x)r\Up(x); (3) If a is an index, then there exists an index /? such that x, y, zÇzX with ...
متن کاملautomatic continuity of almost multiplicative maps between frechet algebras
for fr$acute{mathbf{text{e}}}$chet algebras $(a, (p_n))$ and $(b, (q_n))$, a linear map $t:arightarrow b$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(tab - ta tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{n}$, $a, b in a$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$,...
متن کاملautomatic continuity of almost multiplicative maps between frechet algebras
for fr$acute{mathbf{text{e}}}$chet algebras $(a, (p_n))$ and $(b, (q_n))$, a linear map $t:arightarrow b$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(tab - ta tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{n}$, $a, b in a$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$,...
متن کاملThe connected Vietoris powerlocale
The Vietoris powerlocale V X is a point-free analogue of the Vietoris hyperspace. In this paper we introduce and study a sublocale V X whose points are those points of V X that (considered as sublocales of X) satisfy a constructively strong connectedness property. V c is a strong monad on the category of locales. The strength gives rise to a product map × : V X × V Y → V (X × Y ), showing that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1975
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1975-0360943-x